login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=1..n} (16 - 4/k).
9

%I #37 Apr 02 2024 11:44:27

%S 1,12,168,2464,36960,561792,8614144,132903936,2060011008,32044615680,

%T 499896004608,7816555708416,122459372765184,1921670157238272,

%U 30197673899458560,475110069351481344,7482983592285831168,117967035454858985472,1861257670509997326336

%N a(n) = Product_{k=1..n} (16 - 4/k).

%C This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

%H Harvey P. Dale, <a href="/A216702/b216702.txt">Table of n, a(n) for n = 0..800</a>

%F G.f.: 1/(1-16*x)^(3/4). - _Harvey P. Dale_, Sep 19 2012

%F From _Peter Bala_, Sep 24 2023: (Start)

%F a(n) = 16^n * binomial(n - 1/4, n).

%F P-recursive: a(n) = 4*(4*n - 1)/n * a(n-1) with a(0) = 1. (End)

%F From _Peter Bala_, Mar 31 2024: (Start)

%F a(n) = (-16)^n * binomial(-3/4, n).

%F a(n) ~ 1/Gamma(3/4) * 16^n/n^(1/4).

%F E.g.f.: hypergeom([3/4], [1], 16*x).

%F a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-3/4, k)* binomial(-3/4, 2*n - k).

%F (16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).

%F Sum_{k = 0..n} a(k)*a(n-k) = (16^n)/(2*n)! * Product_{k = 1..n} (4*k^2 - 1) = (16^n)/(2*n)! * A079484(n). (End)

%p seq(product(16-4/k, k=1.. n), n=0..20);

%p seq((4^n/n!)*product(4*k+3, k=0.. n-1), n=0..20);

%t Table[Product[16-4/k,{k,n}],{n,0,20}] (* or *) CoefficientList[ Series[ 1/(1-16*x)^(3/4),{x,0,20}],x] (* _Harvey P. Dale_, Sep 19 2012 *)

%Y Cf. A004988, A049382, A004994, A034385, A098430.

%K nonn,easy

%O 0,2

%A _Michel Lagneau_, Sep 16 2012