login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282042
Let p = n-th prime == 7 mod 8; a(n) = sum of quadratic nonresidues mod p that are > p/2.
5
11, 128, 219, 520, 1176, 1348, 2221, 3310, 4766, 6106, 8034, 8271, 10049, 12443, 14613, 15193, 21012, 27486, 26814, 30664, 39248, 39318, 41699, 48888, 46052, 52595, 74613, 72878, 78599, 85768, 107895, 103643, 111125, 111195, 130497, 145619, 148490, 160159, 169503, 166856, 180406, 194204
OFFSET
1,1
LINKS
Aebi, Christian, and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 (2015).
MAPLE
with(numtheory):
Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[];
for i1 from 1 to 300 do
p:=ithprime(i1);
if (p mod 8) = 7 then
ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0;
for j from 1 to p-1 do
if legendre(j, p)=1 then
q:=q+j;
if j<p/2 then ql:=ql+j; else qu:=qu+j; fi;
else
n:=n+j;
if j<p/2 then nl:=nl+j; else nu:=nu+j; fi;
fi;
od;
Ql:=[op(Ql), ql];
Qu:=[op(Qu), qu];
Q:=[op(Q), q];
Nl:=[op(Nl), nl];
Nu:=[op(Nu), nu];
N:=[op(N), n];
fi;
od:
Ql; Qu; Q; Nl; Nu; N; # A282039, A282040, A282041, A282039 again, A282042, A282043
MATHEMATICA
sum[p_]:= Total[If[#>p/2 && JacobiSymbol[#, p] != 1, #, 0]& /@ Range[p-1]];
sum /@ Select[Range[7, 1000, 8], PrimeQ] (* Jean-François Alcover, Aug 31 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2017
STATUS
approved