login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282041
Let p = n-th prime == 7 mod 8; a(n) = sum of quadratic residues mod p.
5
7, 92, 186, 423, 994, 1343, 2369, 3683, 5134, 6012, 7831, 8955, 11596, 12428, 15517, 16802, 21148, 28720, 31929, 33321, 41807, 44778, 51856, 51253, 57466, 57845, 82063, 88015, 95281, 97050, 117916, 127225, 130025, 135180, 165423, 161927, 176915, 183609, 193132, 202180, 228212, 228056, 236849
OFFSET
1,1
LINKS
Aebi, Christian, and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 (2015).
MAPLE
with(numtheory):
Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[];
for i1 from 1 to 300 do
p:=ithprime(i1);
if (p mod 8) = 7 then
ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0;
for j from 1 to p-1 do
if legendre(j, p)=1 then
q:=q+j;
if j<p/2 then ql:=ql+j; else qu:=qu+j; fi;
else
n:=n+j;
if j<p/2 then nl:=nl+j; else nu:=nu+j; fi;
fi;
od;
Ql:=[op(Ql), ql];
Qu:=[op(Qu), qu];
Q:=[op(Q), q];
Nl:=[op(Nl), nl];
Nu:=[op(Nu), nu];
N:=[op(N), n];
fi;
od:
Ql; Qu; Q; Nl; Nu; N; # A282039, A282040, A282041, A282039 again, A282042, A282043
MATHEMATICA
Table[Table[Mod[a^2, p], {a, 1, (p-1)/2}]//Total, {p, Select[Prime[Range[100]], Mod[#, 8] == 7 &]}] (* Vincenzo Librandi, Feb 21 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2017
STATUS
approved