The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282727 Let p = n-th prime == 3 mod 8; a(n) = (sum of quadratic residues mod p that are < p/2) + (sum of all quadratic residues mod p). 12
 2, 35, 108, 567, 1073, 1386, 2132, 3551, 5330, 6003, 8262, 9968, 13860, 16046, 19625, 24957, 29376, 34155, 37541, 44793, 54758, 61217, 68036, 75215, 77688, 85347, 93366, 98912, 101745, 107531, 119583, 129042, 135548, 145607, 149040, 170478, 193356, 205335, 213521, 230373, 243432, 256851, 280016, 294395 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is also the (sum of quadratic nonresidues mod p that are < p/2) + (sum of all quadratic nonresidues mod p) (= A282721 + A282723 = A282724 + A282726). LINKS Robert Israel, Table of n, a(n) for n = 1..4000 Christian Aebi and Grant Cairns, Sums of Quadratic residues and nonresidues, arXiv:1512.00896 [math.NT], 2015. MAPLE with(numtheory): Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[]; for i1 from 1 to 300 do p:=ithprime(i1); if (p mod 8) = 3 then ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; for j from 1 to p-1 do if legendre(j, p)=1 then q:=q+j; if j

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 18:43 EDT 2021. Contains 345419 sequences. (Running on oeis4.)