login
A282727
Let p = n-th prime == 3 mod 8; a(n) = (sum of quadratic residues mod p that are < p/2) + (sum of all quadratic residues mod p).
12
2, 35, 108, 567, 1073, 1386, 2132, 3551, 5330, 6003, 8262, 9968, 13860, 16046, 19625, 24957, 29376, 34155, 37541, 44793, 54758, 61217, 68036, 75215, 77688, 85347, 93366, 98912, 101745, 107531, 119583, 129042, 135548, 145607, 149040, 170478, 193356, 205335, 213521, 230373, 243432, 256851, 280016, 294395
OFFSET
1,1
COMMENTS
This is also the (sum of quadratic nonresidues mod p that are < p/2) + (sum of all quadratic nonresidues mod p) (= A282721 + A282723 = A282724 + A282726).
LINKS
Christian Aebi and Grant Cairns, Sums of Quadratic residues and nonresidues, arXiv:1512.00896 [math.NT], 2015.
MAPLE
with(numtheory):
Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[];
for i1 from 1 to 300 do
p:=ithprime(i1);
if (p mod 8) = 3 then
ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0;
for j from 1 to p-1 do
if legendre(j, p)=1 then
q:=q+j;
if j<p/2 then ql:=ql+j; else qu:=qu+j; fi;
else
n:=n+j;
if j<p/2 then nl:=nl+j; else nu:=nu+j; fi;
fi;
od;
Ql:=[op(Ql), ql];
Qu:=[op(Qu), qu];
Q:=[op(Q), q];
Nl:=[op(Nl), nl];
Nu:=[op(Nu), nu];
N:=[op(N), n];
Th:=[op(Th), q+ql];
fi;
od:
Ql; Qu; Q; Nl; Nu; N; Th; # A282721 - A282727
# Alternative:
v:= proc(x, r) if x <= r then 2*x else x fi end proc:
f:= proc(p) local q, r, j;
r:= (p-1)/2;
add(v(j^2 mod p, r), j=1..r)
end proc:
map(f, select(isprime, [seq(i, i=3..1000, 8)])); # Robert Israel, Mar 27 2017
MATHEMATICA
v[x_, r_] := If[x <= r, 2*x, x];
f[p_] := Module[{r}, r = (p-1)/2; Sum[v[PowerMod[j, 2, p], r], {j, 1, r}]];
f /@ Select[Range[3, 1000, 8], PrimeQ] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
PROG
(Python)
from sympy import isprime
def v(x, r):
return 2*x if x<=r else x
def a(p):
r=(p - 1)//2
return sum(v((j**2)%p, r) for j in range(1, r + 1))
print([a(p) for p in range(3, 2001, 8) if isprime(p)]) # Indranil Ghosh, Mar 27 2017 translated from Robert Israel's Maple program
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2017
STATUS
approved