The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282724 Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic nonresidues mod p that are < p/2. 2
 0, 2, 13, 94, 129, 247, 306, 555, 745, 999, 1579, 1555, 2466, 2653, 3059, 4581, 5430, 6351, 6658, 8409, 9087, 11158, 11996, 12858, 14814, 15788, 17880, 17277, 18950, 19481, 22400, 24876, 23518, 27448, 28115, 32285, 36743, 38269, 39851, 43111, 47406, 50055, 53683, 51645, 58274, 66410, 65119, 76013, 80465 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Jean-François Alcover, Table of n, a(n) for n = 1..1000 Aebi, Christian, and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 (2015). MAPLE with(numtheory): Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[]; for i1 from 1 to 300 do p:=ithprime(i1); if (p mod 8) = 3 then ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; for j from 1 to p-1 do if legendre(j, p)=1 then q:=q+j; if j

1 then             a := a+r ;         end if;     end do:     a ; end proc: seq(A282724(n), n=1..10) ; # R. J. Mathar, Apr 07 2017 MATHEMATICA b[1] = 3; b[n_] := b[n] = Module[{p}, p = NextPrime[b[n - 1]]; While[Mod[p, 8] != 3, p = NextPrime[p]]; p]; a[n_] := Module[{p, q, r}, p = b[n]; q = 0; For[r = 1, r <= (p - 1)/2, r++, If[KroneckerSymbol[r, p] != 1, q = q + r]]; q]; Array[a, 50] (* Jean-François Alcover, Nov 27 2017, after R. J. Mathar *) CROSSREFS Cf. A282035-A282043 and A282721-A282727. Sequence in context: A300764 A209470 A140636 * A104255 A118352 A320360 Adjacent sequences:  A282721 A282722 A282723 * A282725 A282726 A282727 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 14:16 EDT 2021. Contains 345057 sequences. (Running on oeis4.)