login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212757
Number of (w,x,y,z) with all terms in {0,...,n} and 2w=max{w,x,y,z}-min{w,x,y,z}.
2
1, 1, 13, 32, 56, 80, 177, 213, 297, 472, 580, 688, 1037, 1169, 1385, 1872, 2124, 2376, 3133, 3421, 3829, 4784, 5240, 5696, 7017, 7521, 8181, 9760, 10480, 11200, 13241, 14021, 14993, 17352, 18396, 19440, 22357, 23473, 24817, 28112, 29540
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
FORMULA
a(n)=-a(n-1)+a(n-2)+4*a(n-3)+3*a(n-4)-3*a(n-5)-6*a(n-6)-3*a(n-7)+3*a(n-8)+4*a(n-9)+a(n-10)-a(n-11)-a(n-12).
G.f.: ( 1+2*x+13*x^2+40*x^3+68*x^4+52*x^5+43*x^6+38*x^7+19*x^8 ) / ( (1+x)^2*(1+x+x^2)^3*(x-1)^4 ).
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[2 w == Max[w, x, y, z] - Min[w, x, y, z], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
Map[t[#] &, Range[0, 45]] (* A212757 *)
LinearRecurrence[{-1, 1, 4, 3, -3, -6, -3, 3, 4, 1, -1, -1}, {1, 1, 13, 32, 56, 80, 177, 213, 297, 472, 580, 688}, 45]
CROSSREFS
Cf. A211795.
Sequence in context: A299449 A300087 A118513 * A140678 A282721 A206345
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2012
STATUS
approved