login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212759
Number of (w,x,y,z) with all terms in {0,...,n} and w, x, and y even.
3
1, 2, 24, 32, 135, 162, 448, 512, 1125, 1250, 2376, 2592, 4459, 4802, 7680, 8192, 12393, 13122, 19000, 20000, 27951, 29282, 39744, 41472, 54925, 57122, 74088, 76832, 97875, 101250, 126976, 131072, 162129, 167042, 204120, 209952
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A211795.
FORMULA
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6) -4*a(n-7) -a(n-8) +a(n-9).
G.f.: (1+x+18*x^2+21*x^4+x^5+2*x^6+4*x^3 ) / ( (1+x)^4*(1-x)^5 ).
a(n) = (n+1)*(2*n^3+9*n^2+15*n+9+(3*n^2+9*n+7)*(-1)^n)/16. - Luce ETIENNE, Sep 23 2015
MATHEMATICA
t = Compile[{{n, _Integer}},
Module[{s = 0}, (Do[If[(Mod[w, 2] == 0) && (Mod[x, 2] == 0) && (Mod[y, 2] == 0),
s++], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
Map[t[#] &, Range[0, 50]] (* A212759 *)
LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {1, 2, 24, 32, 135, 162, 448, 512, 1125}, 45]
CROSSREFS
Cf. A211795.
Sequence in context: A349724 A022374 A139334 * A112660 A330526 A280648
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 29 2012
STATUS
approved