login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213686
Numbers which are the values of the quadratic polynomial 13+20*t+24*k+32*k*t at nonnegative integers.
0
13, 33, 37, 53, 61, 73, 85, 89, 93, 109, 113, 133, 141, 145, 153, 157, 173, 181, 193, 201, 205, 213, 229, 233, 245, 253, 257, 273, 277, 293, 297, 301, 313, 317, 325, 333, 349, 353, 369, 373, 393, 397, 401, 405, 413, 421, 425, 433, 445, 453, 469, 473, 481
OFFSET
1,1
COMMENTS
For all these numbers a(n) we have the following Erdos-Straus decomposition: 4/p=4/(13+24*k+20*t+32*k*t) = 1/(6*k+8*k*t+4+6*t) + 1/((13+24*k+20*t+32*k*t)*(5+8*k)*(3*k+4*k*t+2+3*t)) + 1/(2*(5+8*k)*(3*k+4*k*t+2+3*t)).
Moreover this sequence is related to irreducible twin Pythagorean triples: the associated Pythagorean triple is [2n(n+1),2n+1,2n(n+1)+1], where n=2+4k.
In 1948 Erdos and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y +1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z).
For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247).
REFERENCES
I. Gueye and M. Mizony : Recent progress about Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 6-14.
M. Mizony and I. Gueye : Towards the proof of Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2,p pp 141-150.
LINKS
P. Erdős, On a Diophantine equation, (Hungarian. Russian, English summaries), Mat. Lapok 1, 1950, pp. 192-210.
M. Mizony and M.-L. Gardes, Sur la conjecture d'Erdős et Straus, see pages 14-17.
K. Yamamoto, On the Diophantine Equation 4/n=1/x+1/y+1/z, Mem. Fac. Sci. Kyushu U. Ser. A 19, 37-47, 1965.
EXAMPLE
For n=12 the a(12)=133 solutions are {k = 0, t = 6},{k = 5, t = 0}.
MAPLE
G:=(n, p)->4/p = [2*(2*n+1)/(n*p+p+1), 4/p/(n*p+p+1), 2/(n*p+p+1)]:
cousin:=proc(p)
local n;
for n from 0 to 300 do
if n*p+p+1 mod 4*(2*n+1)=0 then return([p, n, G(n, p)]); fi:
od:
end:
L:=NULL:for m to 400 do L:=L, cousin(4*m+1): od:{L}[1..4]; map(u->op(1, u), {L});
CROSSREFS
Cf. A213340 (the quadratic polynomial 5+8t+12k+16kt).
Cf. A001844 (centered square numbers: 2n(n+1)+1).
Cf. A005408 (x values), A046092 (y values).
Cf. A073101 (number of solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z).
Sequence in context: A282721 A206345 A284862 * A050659 A123161 A146052
KEYWORD
nonn
AUTHOR
Michel Mizony, Jun 17 2012
STATUS
approved