login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A213683
Number of rooted trees with n nodes having some subtrees replaced by cycles.
3
0, 0, 0, 1, 2, 4, 9, 23, 61, 168, 469, 1326, 3776, 10833, 31228, 90438, 262860, 766497, 2241194, 6569206, 19296214, 56789286, 167419568, 494337282, 1461690270, 4327638394, 12828158828, 38067670764, 113081627856, 336233591365, 1000636296475, 2980391776958
OFFSET
0,5
LINKS
FORMULA
a(n) = A213674(n) - A000081(n).
EXAMPLE
: o : o o : o o o o :
: / \ : / \ | : / \ | / \ | :
: o---o : o o o : o o o o o o :
: : \ / / \ : | | / \ / \ | :
: : o o---o : o---o o o o---o o :
: : : \ / / \ :
: n=3 . n=4 : n=5 o o---o :
...................................................................
: o o o o o o o o o :
: / \ | | | | / \ / \ / \ /|\ :
: o o o o o o o o o o o o o o o :
: | | / \ | / \ | / \ | | / \ / \ :
: o o o o o o o o o---o o o o o o---o :
: \ / | | / \ / \ | / \ \ / :
: o o---o o o o---o o o---o o :
: \ / / \ :
: n=6 o o---o :
:.................................................................:
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
add(((x, y)-> map(p->binomial(p[1]+j-1, j)*p[2], [[x[1], y[1]],
[x[2], y[2]]]))(g(i), b(n-i*j, i-1)), j=0..n/i)))
end:
g:= n-> (l-> l+ [0, `if`(n>2, 1, 0)])(b(n-1, n-1)):
a:= n-> (l->l[2]-l[1])(g(n)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A213674[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]] // FullSimplify];
A213674[n_] := b[n - 1, n - 1] + If[n > 2, 1, 0];
A81[n_] := A81[n] = If[n <= 1, n, Sum[Sum[d*A81[d], {d, Divisors[j]}]*A81[n - j], {j, 1, n - 1}]/(n - 1)];
a[n_] := A213674[n] - A81[n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 26 2022, after Alois P. Heinz in A213674 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 04 2013
STATUS
approved