login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213683
Number of rooted trees with n nodes having some subtrees replaced by cycles.
3
0, 0, 0, 1, 2, 4, 9, 23, 61, 168, 469, 1326, 3776, 10833, 31228, 90438, 262860, 766497, 2241194, 6569206, 19296214, 56789286, 167419568, 494337282, 1461690270, 4327638394, 12828158828, 38067670764, 113081627856, 336233591365, 1000636296475, 2980391776958
OFFSET
0,5
LINKS
FORMULA
a(n) = A213674(n) - A000081(n).
EXAMPLE
: o : o o : o o o o :
: / \ : / \ | : / \ | / \ | :
: o---o : o o o : o o o o o o :
: : \ / / \ : | | / \ / \ | :
: : o o---o : o---o o o o---o o :
: : : \ / / \ :
: n=3 . n=4 : n=5 o o---o :
...................................................................
: o o o o o o o o o :
: / \ | | | | / \ / \ / \ /|\ :
: o o o o o o o o o o o o o o o :
: | | / \ | / \ | / \ | | / \ / \ :
: o o o o o o o o o---o o o o o o---o :
: \ / | | / \ / \ | / \ \ / :
: o o---o o o o---o o o---o o :
: \ / / \ :
: n=6 o o---o :
:.................................................................:
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
add(((x, y)-> map(p->binomial(p[1]+j-1, j)*p[2], [[x[1], y[1]],
[x[2], y[2]]]))(g(i), b(n-i*j, i-1)), j=0..n/i)))
end:
g:= n-> (l-> l+ [0, `if`(n>2, 1, 0)])(b(n-1, n-1)):
a:= n-> (l->l[2]-l[1])(g(n)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A213674[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]] // FullSimplify];
A213674[n_] := b[n - 1, n - 1] + If[n > 2, 1, 0];
A81[n_] := A81[n] = If[n <= 1, n, Sum[Sum[d*A81[d], {d, Divisors[j]}]*A81[n - j], {j, 1, n - 1}]/(n - 1)];
a[n_] := A213674[n] - A81[n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 26 2022, after Alois P. Heinz in A213674 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 04 2013
STATUS
approved