login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213687
Numbers which are the values of the quadratic polynomial 3+4*k+7*t+8*k*t on nonnegative integers.
0
3, 7, 10, 11, 15, 17, 19, 22, 23, 24, 27, 31, 34, 35, 37, 38, 39, 43, 45, 46, 47, 51, 52, 55, 57, 58, 59, 63, 66, 67, 70, 71, 73, 75, 77, 79, 80, 82, 83, 87, 91, 94, 95, 97, 99, 101, 103, 106, 107, 108, 111, 112, 115, 117, 118, 119, 122, 123, 126, 127, 129
OFFSET
1,1
COMMENTS
For all these numbers a(n) we have the following Erdos-Straus decomposition: 4/p= 4/(3+4*k+7*t+8*k*t) = 1/(2*(3+4*k+7*t+8*k*t)*(1+k)) + 1/((1+k)*(2*t+1)) + 1/(2*(1+k)*(2*t+1)*(3+4*k+7*t+8*k*t)));
Moreover this sequence is related to irreducible twin Pythagorean triples: the associated Pythagorean triple is [2t(t+1),2t+1, 2t(t+1)+1].
In 1948 Erdos and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y +1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z).
For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247).
REFERENCES
I. Gueye and M. Mizony, Recent progress about Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 6-14.
M. Mizony and I. Gueye, Towards the proof of Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2,p pp 141-150.
LINKS
P. Erdős, On a Diophantine equation, (Hungarian. Russian, English summaries), Mat. Lapok 1, 1950, pp. 192-210.
M. Mizony and M.-L. Gardes, Sur la conjecture d'Erdős et Straus, see pages 14-17.
K. Yamamoto, On the Diophantine Equation 4/n=1/x+1/y+1/z, Mem. Fac. Sci. Kyushu U. Ser. A 19, 37-47, 1965.
EXAMPLE
For n=12 the a(12)=31 solutions are {k = 0, t = 4},{k = 7, t = 0}.
MAPLE
H:=(k, t) -> 4/(3+4*k+7*t+8*k*t) = [1/2*1/((3+4*k+7*t+8*k*t)*(1+k)), 1/((1+k)*(2*t+1)), 1/2*1/((1+k)*(2*t+1)*(3+4*k+7*t+8*k*t))]:
cousin:=proc(p)
local n, k;
for n from 0 to (p-3)/7 do
if (p-3-7*n) mod (4+8*n)=0 then k:=(p-3-7*n)/(4+8*n):
return([p, n, H(k, n)]) fi; od;
end:
L:=NULL:for p from 2 to 500 do L:=L, cousin(p): od:{L}[1..10]; map(u->op(1, u), {L}); map(u->op(2, u), {L});
CROSSREFS
Cf. A213340 (the quadratic polynomial 5+8t+12k+16kt).
Cf. A001844 (centered square numbers: 2n(n+1)+1).
Cf. A005408 (x values), A046092 (y values).
Cf. A073101 (number of solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z).
Sequence in context: A190677 A310177 A324774 * A226934 A238506 A308169
KEYWORD
nonn
AUTHOR
Michel Mizony, Jun 18 2012
STATUS
approved