login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272913
a(n) = 3*2^(2*n-1)*(n-1)*n^3*binomial(2*n,n)^2, a closed form for a triple binomial sum involving absolute values.
1
0, 0, 6912, 2073600, 361267200, 48771072000, 5665247723520, 595732271726592, 58357447026278400, 5420989989833932800, 483204292920999936000, 41671538221507034480640, 3497929581885972295974912, 287077554068924493987840000, 23115688495680026711162880000
OFFSET
0,3
COMMENTS
See Theorem 6 of Brent et al. article.
a(n) is divisible by 48^2.
LINKS
Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477 [math.CO], 2016, page 11.
FORMULA
a(n) = Sum_{i=-n..n} (Sum_{j=-n..n} (Sum_{k=-n..n} binomial(2*n, n+i)*binomial(2*n, n+j)*binomial(2*n, n+k)*|(i^2-j^2)*(i^2-k^2)*(j^2-k^2)|)).
G.f.: 6912*x^2*(2F1(5/2, 5/2, 2, 64*x) + 100*x*2F1(7/2, 7/2, 3, 64*x)), where 2F1() is the Gauss hypergeometric function.
D-finite with recurrence (n-2)*(n-1)^2*a(n) -16*n*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Feb 08 2021
MATHEMATICA
Table[3 2^(2 n - 1) (n - 1) n^3 Binomial[2 n, n]^2, {n, 0, 20}]
PROG
(PARI) vector(20, n, n--; 3*2^(2*n-1)*(n-1)*n^3*binomial(2*n, n)^2)
(Sage) [3*2^(2*n-1)*(n-1)*n^3*binomial(2*n, n)^2 for n in range(20)]
(Magma) [3*2^(2*n-1)*(n-1)*n^3*Binomial(2*n, n)^2: n in [0..20]];
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 10 2016
STATUS
approved