login
A272910
Numbers n such that (n-1)^3 + (n+1)^3 is a taxi-cab number (A001235).
1
19, 32, 93, 124, 208, 243, 308, 395, 427, 471, 603, 672, 1057, 1568, 1892, 2181, 2223, 2587, 3040, 3049, 4037, 4336, 5232, 5556, 6196, 6305, 6643, 8288, 8748, 10161, 10185, 10612, 10985, 12352, 13741, 14807, 16021, 17568, 20352, 20653, 24080, 27216, 27867, 31113, 31869, 32032, 32500, 36593
OFFSET
1,1
COMMENTS
Numbers n such that 2*n*(n^2+3) is a member of A001235.
19 and 3049 are the only prime numbers in this sequence for n < 10^5.
How is the graph of second differences of this sequence?
LINKS
EXAMPLE
19 is a term because 18^3 + 20^3 = 13832 = 2^3 + 24^3.
PROG
(PARI) T = thueinit(x^3+1, 1);
isA001235(n) = my(v=thue(T, n)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1;
lista(nn) = for(n=1, nn, if(isA001235(2*n*(n^2+3)), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, May 09 2016
STATUS
approved