login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272914
Sixth powers ending in digit 6.
8
4096, 46656, 7529536, 16777216, 191102976, 308915776, 1544804416, 2176782336, 7256313856, 9474296896, 24794911296, 30840979456, 68719476736, 82653950016, 164206490176, 192699928576, 351298031616, 404567235136, 689869781056, 782757789696, 1265319018496, 1418519112256, 2194972623936
OFFSET
1,1
COMMENTS
Other sequences of k-th powers ending in digit k are: A017281 (k=1), A017355 (k=3), A017333 (k=5), A017311 (k=7), A017385 (k=9). It is missing k=4 because the fourth powers end with 0, 1, 5 or 6.
Union of A017322 and A017346.
a(h)^(1/6) is a member of A068408 for h = 2, 4, 8, 12, 16, 20, 36, 76, ...
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
FORMULA
O.g.f.: 64*x*(64 + 665*x + 116536*x^2 + 140505*x^3 + 2023280*x^4 + 983830*x^5 + 4720240*x^6 + 983830*x^7 + 2023280*x^8 + 140505*x^9 + 116536*x^10 + 665*x^11 + 64*x^12)/((1 + x)^6*(1 - x)^7).
E.g.f.: (-8192 + 45*(91 + 182*x - 5250*x^2 + 16000*x^3 - 9375*x^4 + 1250*x^5)*exp(-x) + (4097 + 287000*x^2 + 1262500*x^3 + 1253125*x^4 + 375000*x^5 + 31250*x^6)*exp(x))/2.
a(n) = (10*n - 3*(-1)^n - 5)^6/64 = 64*A047221(n)^6.
MATHEMATICA
Table[(10 n - 3 (-1)^n - 5)^6/64, {n, 1, 30}]
PROG
(Magma) /* By definition: */ k:=6; [n^k: n in [0..200] | Modexp(n, k, 10) eq k];
(Magma) [(10*n-3*(-1)^n-5)^6/64: n in [1..30]];
(PARI) vector(30, n, nn; (10*n-3*(-1)^n-5)^6/64)
(Sage) [(10*n-3*(-1)^n-5)^6/64 for n in (1..30)]
(Maxima) makelist((10*n-3*(-1)^n-5)^6/64, n, 1, 30);
CROSSREFS
Similar sequences (see comment): A017281, A017311, A017333, A017355, A017385.
Sequence in context: A223334 A231945 A220766 * A016996 A218527 A017068
KEYWORD
nonn,base,easy
AUTHOR
Bruno Berselli, May 24 2016
STATUS
approved