login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272915
a(n) = n + floor(5*n/6).
1
0, 1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 23, 25, 27, 29, 31, 33, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 78, 80, 82, 84, 86, 88, 89, 91, 93, 95, 97, 99, 100, 102, 104, 106, 108, 110, 111, 113, 115, 117, 119
OFFSET
0,3
COMMENTS
Equivalently, numbers congruent to {0, 1, 3, 5, 7, 9} mod 11.
In general, n + floor((k-1)*n/k) provides the numbers congruent to {0, 1, 3, 5, ..., 2*k-3} mod (2*k-1) for k>1.
FORMULA
G.f.: x*(1 + 2 x + 2 x^2 + 2 x^3 + 2 x^4 + 2 x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5)).
a(n) = a(n-1) + a(n-6) - a(n-7).
a(6*k + r) = 11*k + 2*r - (1 - (-1)^a(r))/2, with r = 0..5.
MATHEMATICA
Table[n + Floor[5 n/6], {n, 0, 70}]
PROG
(PARI) vector(70, n, n--; n+floor(5*n/6))
(Sage) [n+floor(5*n/6) for n in range(70)];
(Python) [n+int(5*n/6) for n in range(70)]
(Maxima) makelist(n+floor(5*n/6), n, 0, 70);
(Magma) [n+Floor(5*n/6): n in [0..70]];
CROSSREFS
Cf. similar sequences with formula n+floor((k-1)*n/k): A032766 (k=2), A047220 (k=3), A047392 (k=4), A187318 (k=5).
Sequence in context: A248633 A137228 A186288 * A094391 A158919 A276384
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 15 2016
STATUS
approved