login
A094391
A Beatty sequence using exp(Pi/4)/(exp(Pi/4) - 1).
2
1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 23, 25, 27, 29, 31, 33, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 66, 68, 69, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 99, 101, 102, 104, 106, 108, 110, 112, 113, 115, 117, 119, 121, 123
OFFSET
1,2
COMMENTS
Beatty complement is A094390.
LINKS
FORMULA
a(n) = floor(n * exp(Pi/4)/(exp(Pi/4) - 1)).
MATHEMATICA
c = E^(Pi/4); d = c/(c-1); Table[Floor[n*d], {n, 70}]
PROG
(Magma)
R:= RealField(100);
[Floor(n*Exp(Pi(R)/4)/(Exp(Pi(R)/4)-1)): n in [1..100]]; // G. C. Greubel, Sep 27 2024
(SageMath)
[int(n*exp(pi/4)/(exp(pi/4)-1)) for n in range(1, 101)] # G. C. Greubel, Sep 27 2024
CROSSREFS
Cf. A094390.
Sequence in context: A137228 A186288 A272915 * A158919 A276384 A329827
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Apr 28 2004
STATUS
approved