OFFSET
0,2
COMMENTS
Binomial transform of 0^n + A001045(n).
From J. M. Bergot, Nov 10 2012: (Start)
Form an array with the first row and column containing all 1's: m(n,1) = m(1,n) = 1 for n=1,2,3,... An interior term m(i,j) is the sum of all preceding terms in row(i) and all preceding terms in column(j): m(i,j) = Sum_{k=1..j-1} m(i,k) + Sum_{l=1..i-1} m(l,j). The sum of the terms in each antidiagonal will reproduce the terms in this sequence beginning at a(0).
The upper left corner of the array begins
1 1 1 1 1 ...
1 2 4 8 16 ...
1 4 10 24 56 ...
1 8 24 66 172 ...
1 16 56 172 490 ...
...
(End) [edited by Jon E. Schoenfield, Sep 08 2018]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..600
Index entries for linear recurrences with constant coefficients, signature (4,-3).
FORMULA
a(n) = 3^n/3 - 0^n/3 + 1.
a(n+1) = 2*A007051(n).
a(n) = A034472(n-1), n > 0. - R. J. Mathar, Sep 05 2008
G.f.: G(0), where G(k)= 1 + 3^k*x/(1 - x/(x + 3^k*x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f.: (1/3)*(-1 + 3*exp(x) + exp(3*x)). - G. C. Greubel, Sep 27 2024
MATHEMATICA
CoefficientList[Series[(1-2x-x^2)/((1-x)(1-3x)), {x, 0, 30}], x] (* Harvey P. Dale, May 20 2011 *)
PROG
(Magma) [3^n/3-0^n/3+1: n in [0..30]]; // Vincenzo Librandi, May 21 2011
(PARI) a(n)=3^n/3-0^n/3+1 \\ Charles R Greathouse IV, Nov 27 2012
(SageMath) [(3^n +3 -int(n==0))//3 for n in range(41)] # G. C. Greubel, Sep 27 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 28 2004
STATUS
approved