Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:46:16
%S 4096,46656,7529536,16777216,191102976,308915776,1544804416,
%T 2176782336,7256313856,9474296896,24794911296,30840979456,68719476736,
%U 82653950016,164206490176,192699928576,351298031616,404567235136,689869781056,782757789696,1265319018496,1418519112256,2194972623936
%N Sixth powers ending in digit 6.
%C Other sequences of k-th powers ending in digit k are: A017281 (k=1), A017355 (k=3), A017333 (k=5), A017311 (k=7), A017385 (k=9). It is missing k=4 because the fourth powers end with 0, 1, 5 or 6.
%C Union of A017322 and A017346.
%C a(h)^(1/6) is a member of A068408 for h = 2, 4, 8, 12, 16, 20, 36, 76, ...
%H Bruno Berselli, <a href="/A272914/b272914.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
%F O.g.f.: 64*x*(64 + 665*x + 116536*x^2 + 140505*x^3 + 2023280*x^4 + 983830*x^5 + 4720240*x^6 + 983830*x^7 + 2023280*x^8 + 140505*x^9 + 116536*x^10 + 665*x^11 + 64*x^12)/((1 + x)^6*(1 - x)^7).
%F E.g.f.: (-8192 + 45*(91 + 182*x - 5250*x^2 + 16000*x^3 - 9375*x^4 + 1250*x^5)*exp(-x) + (4097 + 287000*x^2 + 1262500*x^3 + 1253125*x^4 + 375000*x^5 + 31250*x^6)*exp(x))/2.
%F a(n) = (10*n - 3*(-1)^n - 5)^6/64 = 64*A047221(n)^6.
%t Table[(10 n - 3 (-1)^n - 5)^6/64, {n, 1, 30}]
%o (Magma) /* By definition: */ k:=6; [n^k: n in [0..200] | Modexp(n, k, 10) eq k];
%o (Magma) [(10*n-3*(-1)^n-5)^6/64: n in [1..30]];
%o (PARI) vector(30, n, nn; (10*n-3*(-1)^n-5)^6/64)
%o (Sage) [(10*n-3*(-1)^n-5)^6/64 for n in (1..30)]
%o (Maxima) makelist((10*n-3*(-1)^n-5)^6/64, n, 1, 30);
%Y Cf. A001014, A016746, A017322, A017346
%Y Similar sequences (see comment): A017281, A017311, A017333, A017355, A017385.
%K nonn,base,easy
%O 1,1
%A _Bruno Berselli_, May 24 2016