login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242971
Alternate n+1, 2^n.
1
1, 1, 2, 2, 3, 4, 4, 8, 5, 16, 6, 32, 7, 64, 8, 128, 9, 256, 10, 512, 11, 1024, 12, 2048, 13, 4096, 14, 8192, 15, 16384, 16, 32768, 17, 65536, 18, 131072, 19, 262144, 20, 524288, 21, 1048576, 22, 2097152, 23, 4194304, 24, 8388608, 25, 16777216, 26, 33554432
OFFSET
0,3
COMMENTS
The offset 0 is a choice. Another sequence could begin with A001477 instead of A000027. The Akiyama-Tanigawa transform applied to 1/(n+1) and 1/2^n are the second Bernoulli numbers A164555(n)/A027642(n) and the second (fractional) Euler numbers A198631(n)/A006519(n+1). (The first Euler numbers are not in the OEIS). Hence a(n).
a(2n+1) - a(2n) = 2^n -n -1 = 0, 0, 1, 4, 11,... = A000295(n) (Eulerian numbers).
a(2n+1) + a(2n) = 2^n +n +1 = A005126(n).
FORMULA
a(n) = ((n+1) mod 2) * (n/2 + 1) + (n mod 2) * 2^((n-1)/2). - Wesley Ivan Hurt, Jun 29 2014
G.f.: (1 + x - x^2) * (1 - x^2 - x^3) / ((1 - x^2)^2 * (1 - 2*x^2)). - Michael Somos, Jun 30 2014
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 4*x^6 + 8*x^7 + 5*x^8 + ...
MAPLE
A242971:=n->((n+1) mod 2)*(n/2 + 1) + (n mod 2) * 2^((n-1)/2); seq(A242971(n), n=0..50); # Wesley Ivan Hurt, Jun 29 2014
MATHEMATICA
Table[Mod[n + 1, 2] (n/2 + 1) + Mod[n, 2] 2^((n - 1)/2), {n, 0, 50}] (* Wesley Ivan Hurt, Jun 29 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 22 2014
STATUS
approved