OFFSET
1,5
COMMENTS
For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: (0 := 0 and 1=4).
MAPLE
c := proc(L, i, n)
option remember;
local a, p;
a := 0 ;
for p in L do
if modp(p, n) = i then
a := a+1 ;
end if;
end do:
a ;
end proc:
A036818 := proc(n)
local a ;
a := 0 ;
for p in combinat[partition](n) do
if c(p, 0, 5) = 0 then
if c(p, 1, 5) = c(p, 4, 5) then
a := a+1 ;
end if;
end if;
end do:
a ;
end proc:
for n from 1 do
print(n, A036818(n)) ;
end do: # R. J. Mathar, Oct 19 2014
MATHEMATICA
c[L_, i_, n_] := c[L, i, n] = Module[{a = 0},
Do[If[Mod[p, n] == i, a++], {p, L}]; a];
Do[If[c[p, 0, 5] == 0, If[c[p, 1, 5] == c[p, 4, 5], a++]],
{p, IntegerPartitions[n]}]; a];
Table[Print[n, " ", A036818[n]]; A036818[n], {n, 1, 60}] (* Jean-François Alcover, Jul 08 2024, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(48)-a(60) from Jean-François Alcover, Jul 08 2024
STATUS
approved