login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241868
Number of compositions of n such that the smallest part has multiplicity eight.
2
1, 0, 9, 9, 54, 99, 309, 684, 1720, 3909, 9036, 20178, 44676, 97191, 209151, 444498, 935002, 1947729, 4021429, 8234244, 16732173, 33758283, 67656843, 134751630, 266817214, 525411981, 1029271671, 2006453683, 3893241810, 7521104292, 14468931402, 27724579185
OFFSET
8,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 8..1000
FORMULA
a(n) ~ n^8 * ((1+sqrt(5))/2)^(n-17) / (5^(9/2) * 8!). - Vaclav Kotesovec, May 02 2014
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
a:= proc(n) local k; k:= 8;
add((p->add(coeff(p, x, i)*binomial(i+k, k),
i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
end:
seq(a(n), n=8..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 8}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 8, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Column k=8 of A238342.
Sequence in context: A371374 A339324 A145971 * A243125 A270008 A255743
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved