Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 09 2015 09:29:16
%S 1,0,9,9,54,99,309,684,1720,3909,9036,20178,44676,97191,209151,444498,
%T 935002,1947729,4021429,8234244,16732173,33758283,67656843,134751630,
%U 266817214,525411981,1029271671,2006453683,3893241810,7521104292,14468931402,27724579185
%N Number of compositions of n such that the smallest part has multiplicity eight.
%H Joerg Arndt and Alois P. Heinz, <a href="/A241868/b241868.txt">Table of n, a(n) for n = 8..1000</a>
%F a(n) ~ n^8 * ((1+sqrt(5))/2)^(n-17) / (5^(9/2) * 8!). - _Vaclav Kotesovec_, May 02 2014
%p b:= proc(n, s) option remember; `if`(n=0, 1,
%p `if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
%p end:
%p a:= proc(n) local k; k:= 8;
%p add((p->add(coeff(p, x, i)*binomial(i+k, k),
%p i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
%p end:
%p seq(a(n), n=8..40);
%t b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 8}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 8, 40}] (* _Jean-François Alcover_, Feb 09 2015, after Maple *)
%Y Column k=8 of A238342.
%K nonn
%O 8,3
%A _Joerg Arndt_ and _Alois P. Heinz_, Apr 30 2014