login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255743
a(1) = 1; for n > 1, a(n) = 9*8^{A000120(n-1)-1}.
5
1, 9, 9, 72, 9, 72, 72, 576, 9, 72, 72, 576, 72, 576, 576, 4608, 9, 72, 72, 576, 72, 576, 576, 4608, 72, 576, 576, 4608, 576, 4608, 4608, 36864, 9, 72, 72, 576, 72, 576, 576, 4608, 72, 576, 576, 4608, 576, 4608, 4608, 36864, 72, 576, 576, 4608, 576, 4608, 4608
OFFSET
1,2
COMMENTS
Also, this is a row of the square array A255740.
Partial sums give A255764.
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 33.
EXAMPLE
Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
9;
9, 72;
9, 72, 72, 576;
9, 72, 72, 576, 72, 576, 576, 4608;
...
MATHEMATICA
MapAt[Floor, Array[9*8^(DigitCount[# - 1, 2, 1] - 1) &, 55], 1] (* Michael De Vlieger, Nov 03 2022 *)
PROG
(PARI) a(n) = if (n==1, 1, 9*8^(hammingweight(n-1)-1)); \\ Michel Marcus, Mar 15 2015
(Python) # Python 3.10+
def A255743(n): return 1 if n == 1 else 9*(1<<((n-1).bit_count()-1)*3) # Chai Wah Wu, Nov 15 2022
KEYWORD
nonn
AUTHOR
Omar E. Pol, Mar 05 2015
EXTENSIONS
More terms from Michel Marcus, Mar 15 2015
STATUS
approved