login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183893
Real part of a Gaussian integer sequence with a Gaussian integer Somos-4 Hankel transform.
4
1, 1, -1, -1, 9, 9, -73, -73, 697, 697, -7161, -7161, 77457, 77457, -868881, -868881, 10016241, 10016241, -117935473, -117935473, 1412307481, 1412307481, -17148100569, -17148100569, 210619695913, 210619695913, -2612194773481, -2612194773481, 32668519882017, 32668519882017, -411515480555553
OFFSET
0,5
COMMENTS
Hankel transform of A183893(n)+I*A183894(n) is the (-4,-4) Somos-4 Gaussian integer sequence A183895(n)+I*A183896(n).
LINKS
FORMULA
a(n) = Re(Sum{k=0..n, C(floor((n+k)/2),k)*I^k*A000108(k)}), I=sqrt(-1).
MATHEMATICA
Table[Re[Sum[I^k*Binomial[2*k, k]*Binomial[Floor[(n + k)/2], k]/(k + 1), {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Feb 21 2018 *)
PROG
(PARI) for(n=0, 50, print1(real(sum(k=0, n, I^k*binomial(2*k, k)* binomial( floor((n+k)/2), k)/(k+1) )), ", ")) \\ G. C. Greubel, Feb 21 2018
(Magma) [Round(Real((&+[(Sqrt(-1))^k*Binomial(2*k, k)*Binomial( Floor((n+k)/2), k)/(k+1): k in [0..n]]))): n in [0..30]]; // G. C. Greubel, Feb 21 2018
CROSSREFS
Sequence in context: A243125 A270008 A255743 * A210052 A239225 A165830
KEYWORD
sign
AUTHOR
Paul Barry, Jan 07 2011
STATUS
approved