login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183893 Real part of a Gaussian integer sequence with a Gaussian integer Somos-4 Hankel transform. 4
1, 1, -1, -1, 9, 9, -73, -73, 697, 697, -7161, -7161, 77457, 77457, -868881, -868881, 10016241, 10016241, -117935473, -117935473, 1412307481, 1412307481, -17148100569, -17148100569, 210619695913, 210619695913, -2612194773481, -2612194773481, 32668519882017, 32668519882017, -411515480555553 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Hankel transform of A183893(n)+I*A183894(n) is the (-4,-4) Somos-4 Gaussian integer sequence A183895(n)+I*A183896(n).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

FORMULA

a(n) = Re(Sum{k=0..n, C(floor((n+k)/2),k)*I^k*A000108(k)}), I=sqrt(-1).

MATHEMATICA

Table[Re[Sum[I^k*Binomial[2*k, k]*Binomial[Floor[(n + k)/2], k]/(k + 1), {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Feb 21 2018 *)

PROG

(PARI) for(n=0, 50, print1(real(sum(k=0, n, I^k*binomial(2*k, k)* binomial( floor((n+k)/2), k)/(k+1) )), ", ")) \\ G. C. Greubel, Feb 21 2018

(MAGMA) [Round(Real((&+[(Sqrt(-1))^k*Binomial(2*k, k)*Binomial( Floor((n+k)/2), k)/(k+1): k in [0..n]]))): n in [0..30]]; // G. C. Greubel, Feb 21 2018

CROSSREFS

Sequence in context: A243125 A270008 A255743 * A210052 A239225 A165830

Adjacent sequences:  A183890 A183891 A183892 * A183894 A183895 A183896

KEYWORD

sign

AUTHOR

Paul Barry, Jan 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 15:16 EST 2020. Contains 338927 sequences. (Running on oeis4.)