login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241867
Number of compositions of n such that the smallest part has multiplicity seven.
2
1, 0, 8, 8, 44, 80, 236, 513, 1238, 2744, 6160, 13384, 28846, 61228, 128513, 266668, 548185, 1116580, 2255452, 4521198, 8998844, 17792361, 34962224, 68305274, 132724871, 256587512, 493665604, 945497642, 1803122075, 3424720416, 6479635254, 12214748337
OFFSET
7,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 7..1000
FORMULA
a(n) ~ n^7 * ((1+sqrt(5))/2)^(n-15) / (5^4 * 7!). - Vaclav Kotesovec, May 02 2014
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
a:= proc(n) local k; k:= 7;
add((p->add(coeff(p, x, i)*binomial(i+k, k),
i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
end:
seq(a(n), n=7..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 7}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 7, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Column k=7 of A238342.
Sequence in context: A278846 A339323 A240037 * A243124 A103744 A151782
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved