login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241869
Number of compositions of n such that the smallest part has multiplicity nine.
2
1, 0, 10, 10, 65, 120, 395, 890, 2320, 5401, 12847, 29380, 66735, 148630, 327270, 711247, 1529020, 3252775, 6855276, 14320645, 29672905, 61018010, 124587120, 252694835, 509337682, 1020610708, 2033777830, 4031514561, 7951981550, 15611183177, 30510678865
OFFSET
9,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 9..1000
FORMULA
a(n) ~ n^9 * ((1+sqrt(5))/2)^(n-19) / (5^5 * 9!). - Vaclav Kotesovec, May 02 2014
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
a:= proc(n) local k; k:= 9;
add((p->add(coeff(p, x, i)*binomial(i+k, k),
i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
end:
seq(a(n), n=9..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n<s, 0, Expand[Sum[b[n-j, s]*x, {j, s, n}] ]]]; a[n_] := With[{k=9}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i+k, k], {i, 0, Exponent[p, x]}]][b[n-j*k, j+1]], {j, 1, n/k}]]; Table[ a[n], {n, 9, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Column k=9 of A238342.
Sequence in context: A219911 A056483 A056473 * A243126 A377189 A269921
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved