OFFSET
10,3
COMMENTS
Conjecture: Generally, for k > 0 is column k of A238342 asymptotic to n^k * ((1+sqrt(5))/2)^(n-2*k-1) / (5^((k+1)/2) * k!). - Vaclav Kotesovec, May 02 2014
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 10..1000
FORMULA
a(n) ~ n^10 * ((1+sqrt(5))/2)^(n-21) / (5^(11/2) * 10!). - Vaclav Kotesovec, May 02 2014
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
a:= proc(n) local k; k:= 10;
add((p->add(coeff(p, x, i)*binomial(i+k, k),
i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
end:
seq(a(n), n=10..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 10}, Sum[Function[{p}, Sum[Coefficient[p, x, i] * Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[ a[n], {n, 10, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved