login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241870
Number of compositions of n such that the smallest part has multiplicity ten.
2
1, 0, 11, 11, 77, 143, 495, 1133, 3058, 7271, 17777, 41580, 96701, 220187, 495528, 1099626, 2412927, 5236308, 11251449, 23952841, 50556265, 105852923, 219975999, 453933348, 930544912, 1895736986, 3839424644, 7732852963, 15492659226, 30884561378, 61276442019
OFFSET
10,3
COMMENTS
Conjecture: Generally, for k > 0 is column k of A238342 asymptotic to n^k * ((1+sqrt(5))/2)^(n-2*k-1) / (5^((k+1)/2) * k!). - Vaclav Kotesovec, May 02 2014
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 10..1000
FORMULA
a(n) ~ n^10 * ((1+sqrt(5))/2)^(n-21) / (5^(11/2) * 10!). - Vaclav Kotesovec, May 02 2014
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
a:= proc(n) local k; k:= 10;
add((p->add(coeff(p, x, i)*binomial(i+k, k),
i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
end:
seq(a(n), n=10..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 10}, Sum[Function[{p}, Sum[Coefficient[p, x, i] * Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[ a[n], {n, 10, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Column k=10 of A238342.
Sequence in context: A003876 A014461 A111221 * A243127 A088761 A215256
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved