login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241873
Number of ascent sequences of length n with exactly three descents.
2
1, 48, 822, 9305, 83590, 647891, 4537169, 29532566, 182034751, 1076357002, 6162251432, 34394051095, 188121970788, 1012370499109, 5376927101387, 28254655805724, 147182871736245, 761235618312420, 3914066453608570, 20027841005048805, 102071452026321906
OFFSET
6,2
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 6..1000
Index entries for linear recurrences with constant coefficients, signature (32,-461,3952,-22443,88896,-251663,512656,-745096,752672,-500976,196992,-34560).
FORMULA
G.f.: -(912*x^6-2440*x^5+2481*x^4-1177*x^3+253*x^2-16*x-1)*x^6 / ((5*x-1) *(4*x-1)^2 *(x-1)^2 *(3*x-1)^3 *(2*x-1)^4).
a(n) = 3*5^(n-1)/8 - 4^(n-1)*n/3 + 3^(n-2)*(6*n^2-2*n-7)/16 - 2^(n-5)*(n-2)*(n-1)*(n+3)/3 - n/24 + 1/16. - Vaclav Kotesovec, May 03 2014
Recurrence: a(n) = -34560*a(n-12) + 196992*a(n-11) - 500976*a(n-10) + 752672*a(n-9) - 745096*a(n-8) + 512656*a(n-7) - 251663*a(n-6) + 88896*a(n-5) - 22443*a(n-4) + 3952*a(n-3) - 461*a(n-2) + 32*a(n-1). - Fung Lam, May 05 2014
MAPLE
gf:= -(912*x^6-2440*x^5+2481*x^4-1177*x^3+253*x^2-16*x-1)*x^6/
((5*x-1)*(4*x-1)^2*(x-1)^2*(3*x-1)^3*(2*x-1)^4):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=6..30);
MATHEMATICA
CoefficientList[Series[-(912 x^6 - 2440 x^5 + 2481 x^4 - 1177 x^3 + 253 x^2 - 16 x - 1)/((5 x - 1) (4 x - 1)^2 (x - 1)^2 (3 x - 1)^3 (2 x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, May 06 2014 *)
LinearRecurrence[{32, -461, 3952, -22443, 88896, -251663, 512656, -745096, 752672, -500976, 196992, -34560}, {1, 48, 822, 9305, 83590, 647891, 4537169, 29532566, 182034751, 1076357002, 6162251432, 34394051095}, 21] (* Ray Chandler, Jul 14 2015 *)
CROSSREFS
Column k=3 of A238858.
Sequence in context: A350378 A192839 A014401 * A233784 A233959 A233177
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved