login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241865
Number of compositions of n such that the smallest part has multiplicity five.
2
1, 0, 6, 6, 27, 49, 125, 258, 579, 1202, 2512, 5157, 10463, 20949, 41627, 81912, 159834, 309641, 595836, 1139211, 2165502, 4094219, 7701857, 14420351, 26880988, 49902183, 92279657, 170020844, 312173822, 571307477, 1042310911, 1896039086, 3439404321, 6222483152
OFFSET
5,3
LINKS
Joerg Arndt, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 5..1500 (first 1000 terms from Joerg Arndt and Alois P. Heinz)
FORMULA
a(n) ~ n^5 * ((1+sqrt(5))/2)^(n-11) / (5^3 * 5!). - Vaclav Kotesovec, May 02 2014
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
a:= proc(n) local k; k:= 5;
add((p->add(coeff(p, x, i)*binomial(i+k, k),
i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
end:
seq(a(n), n=5..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 5}, Sum[Function[{p}, Sum[Coefficient[p, x, i] * Binomial[i+k, k], {i, 0, Exponent[p, x]}]][b[n-j*k, j+1]], {j, 1, n/k}]]; Table[ a[n], {n, 5, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Column k=5 of A238342.
Sequence in context: A286482 A123874 A339321 * A243122 A274940 A341548
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved