The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286482 The number of convex n-gons with vertices consisting of pairs of positive integers (1, s_1), ..., (n, s_n) such that max(s_i) is minimized. 0
 1, 1, 6, 6, 26, 12, 42, 6, 24, 2, 48, 2, 64, 2, 56 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is even for all n > 2 because an n-gon whose vertices are defined by a function cannot have vertical symmetry, thus each polygon has a corresponding polygon which is flipped vertically. For each n-gon, max(s_i) is equal to the maximum value in the n-th row of A285521. LINKS EXAMPLE For n = 8, the a(8) = 6 octagons are depicted below as three pairs, with the polygons on top being a vertical reflection of the polygons below (and vice versa). . . [2,3,1,1,4,4,2,3]   [2,3,1,4,1,4,2,3]   [2,3,1,4,4,1,3,2] . .          xx                 x x                 xx .       x     x             x     x             x    x .      x     x             x     x             x      x .        xx                  x x                 x  x . .---------------------------------------------------------- . .        xx                  x x                 x  x .      x     x             x     x             x      x .       x     x             x     x             x    x .          xx                 x x                 xx . .  [3,2,4,4,1,1,3,2]   [3,2,4,1,4,1,3,2]   [3,2,4,1,1,4,2,3] CROSSREFS Cf. A285521. Sequence in context: A077193 A056482 A255466 * A123874 A339321 A241865 Adjacent sequences:  A286479 A286480 A286481 * A286483 A286484 A286485 KEYWORD nonn,more AUTHOR Peter Kagey, May 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 11:57 EST 2022. Contains 350455 sequences. (Running on oeis4.)