OFFSET
0,11
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
EXAMPLE
Triangle begins:
1;
-1, 1;
0, 0, 1;
-1, 1, 1, 1;
-2, 2, 3, 2, 1;
-6, 6, 8, 6, 3, 1;
-18, 18, 24, 18, 10, 4, 1;
-57, 57, 75, 57, 33, 15, 5, 1;
Production matrix begins:
-1, 1;
-1, 1, 1;
-1, 1, 1, 1;
-1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1, 1, 1;
MATHEMATICA
A065602[n_, k_]:= A065602[n, k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n - j) -k-1), {j, 0, (n-k)/2}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 27 2022 *)
PROG
(SageMath)
def A065602(n, k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
def A237619(n, k):
if (n<2): return (-1)^(n-k)
elif (k==0): return A065602(n, 0)
else: return A065602(n, k)
flatten([[A237619(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2022
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Philippe Deléham, Feb 10 2014
STATUS
approved