OFFSET
0,3
COMMENTS
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (seventeenth row of the table).
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Pyramidal Number.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(1 + 16*x)/(1 - x)^4.
For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(17*i+1); see the generalization in A237616 (Formula field).
E.g.f.: x*(6 + 54*x + 17*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019
EXAMPLE
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 18;
3, 36, 35;
4, 54, 70, 52;
5, 72, 105, 104, 69;
6, 90, 140, 156, 138, 86;
7, 108, 175, 208, 207, 172, 103;
8, 126, 210, 260, 276, 258, 206, 120;
9, 144, 245, 312, 345, 344, 309, 240, 137;
10, 162, 280, 364, 414, 430, 412, 360, 274, 154; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 17*r - 16 and T(r,c) = T(r-1,c) + T(r,r) = (r-c+1) * T(r,r), with r>=c>0.
MAPLE
seq(n*(n+1)*(17*n-14)/6, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[n(n+1)(17*n-14)/6, {n, 0, 40}]
CoefficientList[Series[x(1+16x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 20, 74}, 40] (* Harvey P. Dale, Aug 04 2021 *)
PROG
(Magma) [n*(n+1)*(17*n-14)/6: n in [0..40]];
(Magma) I:=[0, 1, 20, 74]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2) +4*Self(n-3)-Self(n-4) : n in [1..40]]; // Vincenzo Librandi, Feb 12 2014
(PARI) vector(40, n, n*(n-1)*(17*n-31)/6) \\ G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(17*n-14)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(17*n-14)/6); # G. C. Greubel, Aug 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 11 2014
STATUS
approved