login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005565 Number of walks on square lattice.
(Formerly M5087)
3
20, 75, 189, 392, 720, 1215, 1925, 2904, 4212, 5915, 8085, 10800, 14144, 18207, 23085, 28880, 35700, 43659, 52877, 63480, 75600, 89375, 104949, 122472, 142100, 163995, 188325, 215264, 244992, 277695, 313565, 352800, 395604, 442187, 492765, 547560, 606800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

R. K. Guy, Letter to N. J. A. Sloane, May 1990

R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = 1/4*(n^4+14n^3+69n^2+136n+80). G.f.: (20-25x+14x^2-3x^3)/(1-x)^5. - Ralf Stephan, Apr 23 2004

a(n) = binomial(n+4,2)^2 - binomial(n+4,1)^2. - Gary Detlefs, Nov 22 2011

Using two consecutive triangular numbers t(n) and t(n+1), starting at n=3, compute the determinant of a 2 X 2 matrix with the first row t(n), t(n+1) and the second row t(n+1), 2*t(n+1). This gives (n+1)^2*(n-2)*(n+2)/4 = a(n-3). - J. M. Bergot, May 17 2012

MAPLE

seq(add (k^3-n^2, k =0..n), n=4..28 ); # Zerinvary Lajos, Aug 26 2007

A005565:=(-20+25*z-14*z**2+3*z**3)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation

MATHEMATICA

CoefficientList[Series[(20-25x+14x^2-3x^3)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 24 2012 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {20, 75, 189, 392, 720}, 40] (* Harvey P. Dale, Dec 04 2020 *)

PROG

(PARI) a(n)=(n^4+14*n^3+69*n^2+136*n)/4+20 \\ Charles R Greathouse IV, Nov 22 2011

(MAGMA) [1/4*(n^4+14*n^3+69*n^2+136*n+80): n in [0..40]]; // Vincenzo Librandi, May 24 2012

CROSSREFS

Sequence in context: A237617 A000529 A238027 * A320484 A066126 A228025

Adjacent sequences:  A005562 A005563 A005564 * A005566 A005567 A005568

KEYWORD

nonn,walk,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 05:20 EDT 2021. Contains 343030 sequences. (Running on oeis4.)