OFFSET
0,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
R. K. Guy, Letter to N. J. A. Sloane, May 1990
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 1/4*(n^4+14n^3+69n^2+136n+80). G.f.: (20-25x+14x^2-3x^3)/(1-x)^5. - Ralf Stephan, Apr 23 2004
a(n) = binomial(n+4,2)^2 - binomial(n+4,1)^2. - Gary Detlefs, Nov 22 2011
Using two consecutive triangular numbers t(n) and t(n+1), starting at n=3, compute the determinant of a 2 X 2 matrix with the first row t(n), t(n+1) and the second row t(n+1), 2*t(n+1). This gives (n+1)^2*(n-2)*(n+2)/4 = a(n-3). - J. M. Bergot, May 17 2012
MAPLE
seq(add (k^3-n^2, k =0..n), n=4..28 ); # Zerinvary Lajos, Aug 26 2007
A005565:=(-20+25*z-14*z**2+3*z**3)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[Series[(20-25x+14x^2-3x^3)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 24 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {20, 75, 189, 392, 720}, 40] (* Harvey P. Dale, Dec 04 2020 *)
PROG
(PARI) a(n)=(n^4+14*n^3+69*n^2+136*n)/4+20 \\ Charles R Greathouse IV, Nov 22 2011
(Magma) [1/4*(n^4+14*n^3+69*n^2+136*n+80): n in [0..40]]; // Vincenzo Librandi, May 24 2012
CROSSREFS
KEYWORD
nonn,walk,easy
AUTHOR
STATUS
approved