Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5087 #60 Sep 08 2022 08:44:33
%S 20,75,189,392,720,1215,1925,2904,4212,5915,8085,10800,14144,18207,
%T 23085,28880,35700,43659,52877,63480,75600,89375,104949,122472,142100,
%U 163995,188325,215264,244992,277695,313565,352800,395604,442187,492765,547560,606800
%N Number of walks on square lattice.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A005565/b005565.txt">Table of n, a(n) for n = 0..1000</a>
%H R. K. Guy, <a href="/A005555/a005555.pdf">Letter to N. J. A. Sloane, May 1990</a>
%H R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 1/4*(n^4+14n^3+69n^2+136n+80). G.f.: (20-25x+14x^2-3x^3)/(1-x)^5. - _Ralf Stephan_, Apr 23 2004
%F a(n) = binomial(n+4,2)^2 - binomial(n+4,1)^2. - _Gary Detlefs_, Nov 22 2011
%F Using two consecutive triangular numbers t(n) and t(n+1), starting at n=3, compute the determinant of a 2 X 2 matrix with the first row t(n), t(n+1) and the second row t(n+1), 2*t(n+1). This gives (n+1)^2*(n-2)*(n+2)/4 = a(n-3). - _J. M. Bergot_, May 17 2012
%p seq(add (k^3-n^2, k =0..n), n=4..28 ); # _Zerinvary Lajos_, Aug 26 2007
%p A005565:=(-20+25*z-14*z**2+3*z**3)/(z-1)**5; # conjectured by _Simon Plouffe_ in his 1992 dissertation
%t CoefficientList[Series[(20-25x+14x^2-3x^3)/(1-x)^5,{x,0,40}],x] (* _Vincenzo Librandi_, May 24 2012 *)
%t LinearRecurrence[{5,-10,10,-5,1},{20,75,189,392,720},40] (* _Harvey P. Dale_, Dec 04 2020 *)
%o (PARI) a(n)=(n^4+14*n^3+69*n^2+136*n)/4+20 \\ _Charles R Greathouse IV_, Nov 22 2011
%o (Magma) [1/4*(n^4+14*n^3+69*n^2+136*n+80): n in [0..40]]; // _Vincenzo Librandi_, May 24 2012
%K nonn,walk,easy
%O 0,1
%A _N. J. A. Sloane_