login
A237620
Semiperimeters s of primitive Pythagorean triples (a, b, c) where a, b, c and s are not squarefree.
0
513, 1960, 2254, 2684, 3225, 3276, 3843, 3969, 4260, 4482, 4950, 5022, 5148, 5247, 5994, 6903, 7029, 7502, 7956, 8658, 10164, 10527, 12201, 12463, 12750, 12936, 13189, 13552, 13728, 13923, 15575, 15717, 16023, 16244, 16611, 16768
OFFSET
1,1
COMMENTS
No primitive Pythagorean triangle (PPT) can have all its integer sides squarefree since at least one side must be divisible by 4. However it is possible to find PPT's where none of the integer sides and the semiperimeter are squarefree. a(n) is the ordered occurrences of such semiperimeters.
EXAMPLE
a(5)=3225 as the PPT (825, 2752, 2873) has a semiperimeter of 3225, no member of (825, 2752, 2873, 3225) is squarefree and it is the 5th occurrence of such a semiperimeter.
MATHEMATICA
getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getlist[j_] := (newlist=getpairs[j]; Table[{newlist[[m]][[1]]^2-newlist[[m]][[2]]^2, 2newlist[[m]][[1]]*newlist[[m]][[2]], newlist[[m]][[1]]^2+newlist[[m]][[2]]^2, newlist[[m]][[1]]*j}, {m, 1, Length[newlist]}]); p=100; quads={}; Do[AppendTo[quads, getlist[2n+1]], {n, 1, p}]; sqquads=Select[Flatten[quads, 1], Union@Table[SquareFreeQ@#[[r]], {r, 1, 4}]=={False} &]; lst=Table[sqquads[[k]][[4]], {k, 1, Length@sqquads}]; Select[Sort@lst, #<2 p^2 &]
CROSSREFS
Sequence in context: A182108 A066697 A076338 * A111344 A230188 A223651
KEYWORD
nonn
AUTHOR
Frank M Jackson, Feb 10 2014
STATUS
approved