login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A228813
Triangle read by rows T(n,k) in which column k lists 1's interleaved with A004526(k-1) zeros starting from the row A002620(k+1), with n>=1, k>=1.
13
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
The sum of row n equals the number of divisors of n.
The number of zeros in row n equals A078152(n).
It appears that there are only eight rows that do not contain zeros. The indices of these rows are 1, 2, 3, 4, 6, 8, 12, 24, the divisors of 24, see A018253.
It appears that A066522 gives the indices of the rows in which the elements are in nonincreasing order.
EXAMPLE
For n = 10, row 10 is [1, 1, 1, 1, 0], and the sum of row 10 is 1+1+1+1+0 = 4. On the other hand, 10 has four divisors: 1, 2, 5, and 10. Note that the sum of row 10 is also A000005(10) = 4, the number of divisors of 10.
Triangle begins:
1;
1, 1;
1, 1;
1, 1, 1;
1, 1, 0;
1, 1, 1, 1;
1, 1, 0, 0;
1, 1, 1, 1;
1, 1, 0, 0, 1;
1, 1, 1, 1, 0;
1, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1;
1, 1, 0, 0, 0, 0;
1, 1, 1, 1, 0, 0;
1, 1, 0, 0, 1, 1;
1, 1, 1, 1, 0, 0, 1;
1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 0;
1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 0, 0, 1, 1;
1, 1, 0, 0, 1, 1, 0, 0;
1, 1, 1, 1, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1;
...
CROSSREFS
Row sums give A000005.
Row n has length A055086(n).
Columns 1 and 2: A000012. Columns 3 and 4: A059841.
Columns 5 and 6: A079978. Columns 7 and 8: A121262.
Columns 9 and 10: A079998. Columns 11 and 12: A079979.
Columns 13 and 14: A082784.
Sequence in context: A152066 A334946 A225595 * A122255 A122261 A015120
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Sep 29 2013
STATUS
approved