Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Oct 06 2013 13:33:23
%S 1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,
%T 1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,1,1,1,1,1,0,0,
%U 1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0
%N Triangle read by rows T(n,k) in which column k lists 1's interleaved with A004526(k-1) zeros starting from the row A002620(k+1), with n>=1, k>=1.
%C The sum of row n equals the number of divisors of n.
%C The number of zeros in row n equals A078152(n).
%C It appears that there are only eight rows that do not contain zeros. The indices of these rows are 1, 2, 3, 4, 6, 8, 12, 24, the divisors of 24, see A018253.
%C It appears that A066522 gives the indices of the rows in which the elements are in nonincreasing order.
%e For n = 10, row 10 is [1, 1, 1, 1, 0], and the sum of row 10 is 1+1+1+1+0 = 4. On the other hand, 10 has four divisors: 1, 2, 5, and 10. Note that the sum of row 10 is also A000005(10) = 4, the number of divisors of 10.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 1, 0;
%e 1, 1, 1, 1;
%e 1, 1, 0, 0;
%e 1, 1, 1, 1;
%e 1, 1, 0, 0, 1;
%e 1, 1, 1, 1, 0;
%e 1, 1, 0, 0, 0;
%e 1, 1, 1, 1, 1, 1;
%e 1, 1, 0, 0, 0, 0;
%e 1, 1, 1, 1, 0, 0;
%e 1, 1, 0, 0, 1, 1;
%e 1, 1, 1, 1, 0, 0, 1;
%e 1, 1, 0, 0, 0, 0, 0;
%e 1, 1, 1, 1, 1, 1, 0;
%e 1, 1, 0, 0, 0, 0, 0;
%e 1, 1, 1, 1, 0, 0, 1, 1;
%e 1, 1, 0, 0, 1, 1, 0, 0;
%e 1, 1, 1, 1, 0, 0, 0, 0;
%e 1, 1, 0, 0, 0, 0, 0, 0;
%e 1, 1, 1, 1, 1, 1, 1, 1;
%e ...
%Y Row sums give A000005.
%Y Row n has length A055086(n).
%Y Columns 1 and 2: A000012. Columns 3 and 4: A059841.
%Y Columns 5 and 6: A079978. Columns 7 and 8: A121262.
%Y Columns 9 and 10: A079998. Columns 11 and 12: A079979.
%Y Columns 13 and 14: A082784.
%Y Cf. A002620, A004526, A018253, A027750, A066522, A078152, A147861, A161904, A196020, A210959, A212119, A212120, A221645, A228812, A228814.
%K nonn,tabf
%O 1
%A _Omar E. Pol_, Sep 29 2013