OFFSET
3,1
COMMENTS
These polynomials give Salem polynomials starting with n=3 and ending with 12.
The row sums are: {-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1,...}
Example: 1 - x^5 - x^6 - x^7 + x^12; with absolute value roots: {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.850137, 1.17628}.
EXAMPLE
{1, -1, -1, 1},
{1, -1, -1, -1, 1},
{1, 0, -1, -1, 0, 1},
{1, 0, -1, -1, -1, 0, 1},
{1, 0, 0, -1, -1, 0, 0, 1},
{1, 0, 0, -1, -1, -1, 0, 0, 1},
{1, 0, 0, 0, -1, -1, 0, 0, 0, 1},
{1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 1},
MATHEMATICA
p[x_, n_] = If[n == 0, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n - 2*Floor[(n - 1)/2]}] + 1/x, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n - 2*Floor[(n - 1)/2]}] + 1];
Table[ExpandAll[p[x, n]], {n, 3, 10}];
a = Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 3, 10}];
Flatten[a]
CROSSREFS
KEYWORD
tabf,sign,uned
AUTHOR
Roger L. Bagula, Nov 23 2008
STATUS
approved