login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152065
A triangular sequence of polynomial coefficients: p(x,n)=If[n == 0, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n - Floor[(n - 1)/2] - 1}] + 1/x, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n - Floor[(n - 1)/2] - 1}] + 1].
0
1, 0, 1, 0, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 0, -1, -1, -1, 1, 1, 0, -1, -1, -1, -1, 1, 1, 0, 0, -1, -1, -1, -1, 1, 1, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1
OFFSET
0,1
COMMENTS
These polynomials gives odd Salem polynomials starting with n=7. The row sums are: {1, 1, 0, 0, -1, -1, -2, -2, -3, -3, -4,...} Example: 1 - x^9 - x^10 - x^11 - x^12 - x^13 - x^14 - x^15 - x^16 - x^17 -x^18 + x^19; with absolute value roots: {1., 0.957624, 0.957624, 0.997081, 0.997081, 0.962514, 0.962514, 0.98743, 0.98743, 0.972887, 0.972887, 0.96672, 0.96672, 0.989308, 0.989308, 0.915352, 0.915352, 0.837413, 1.99902}.
FORMULA
p(x,n)=If[n == 0, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n - Floor[(n - 1)/2] - 1}] + 1/x, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n - Floor[(n - 1)/2] - 1}] + 1]; t(n,m/)=coefficients(p(x,n)).
EXAMPLE
{1}, {0, 1}, {0, -1, 1}, {1, -1, -1, 1}, {1, -1, -1, -1, 1}, {1,0, -1, -1, -1, 1}, {1, 0, -1, -1, -1, -1, 1}, {1, 0, 0, -1, -1, -1, -1, 1}, {1, 0, 0, -1, -1, -1, -1, -1, 1}, {1, 0, 0, 0, -1, -1, -1, -1, -1, 1}, {1, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1}
MATHEMATICA
Clear[p, x, n, a, m]; p[x_, n_] = If[n == 0, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n -Floor[(n - 1)/2] - 1}] + 1/x, x^n - x^Floor[(n - 1)/2]*Sum[x^m, {m, 0, n - Floor[(n - 1)/2] - 1}] + 1]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A331990 A301849 A074332 * A267870 A267878 A231367
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Nov 23 2008
STATUS
approved