login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122255
Characteristic function of numbers with 3-smooth Euler's totient (A000010).
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1
OFFSET
1,1
COMMENTS
Multiplicative because A000010 is. - Andrew Howroyd, Aug 01 2018
FORMULA
a(n) = if A006530(A000010(n)) <= 3 then 1 else 0.
a(A122254(n)) = a(A048135(n)) = 1; a(A048136(n)) = 0.
a(n) = if n=1 then 0 else A122256(n) - A122256(n-1).
a(n) = A122261(n) for n < 25.
a(n) = A065333(A000010(n)). - Antti Karttunen, Aug 22 2017
Multiplicative with a(p^e) = 1 for e = 1 and A006530(p-1) <= 3 or p <= 3; otherwise 0. - Andrew Howroyd, Aug 01 2018
EXAMPLE
For n = 25, phi(25) = 20 = 2^2 * 5^1, and this is not 3-smooth, thus a(25) = 0.
For n = 26, phi(26) = 12 = 2^4 * 3^1, and here there are no larger prime factors than 3 (12 is 3-smooth), thus a(26) = 1. - Antti Karttunen, Aug 22 2017
MATHEMATICA
a[n_] := Boole[FactorInteger[EulerPhi[n]][[-1, 1]] <= 3];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019 *)
PROG
(PARI) a(n)=n=eulerphi(n); n>>=valuation(n, 2); n==3^valuation(n, 3) \\ Charles R Greathouse IV, Feb 21 2013
CROSSREFS
Cf. A000010, A006530, A065333, A122261, A122256 (partial sums).
Characteristic function of A122254.
Sequence in context: A334946 A225595 A228813 * A122261 A015120 A015142
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Aug 29 2006
STATUS
approved