Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 20 2019 07:53:30
%S 1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,0,1,0,1,0,1,
%T 1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,0,0,1,
%U 0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,1,0,1,1
%N Characteristic function of numbers with 3-smooth Euler's totient (A000010).
%C Multiplicative because A000010 is. - _Andrew Howroyd_, Aug 01 2018
%H Antti Karttunen, <a href="/A122255/b122255.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%F a(n) = if A006530(A000010(n)) <= 3 then 1 else 0.
%F a(A122254(n)) = a(A048135(n)) = 1; a(A048136(n)) = 0.
%F a(n) = if n=1 then 0 else A122256(n) - A122256(n-1).
%F a(n) = A122261(n) for n < 25.
%F a(n) = A065333(A000010(n)). - _Antti Karttunen_, Aug 22 2017
%F Multiplicative with a(p^e) = 1 for e = 1 and A006530(p-1) <= 3 or p <= 3; otherwise 0. - _Andrew Howroyd_, Aug 01 2018
%e For n = 25, phi(25) = 20 = 2^2 * 5^1, and this is not 3-smooth, thus a(25) = 0.
%e For n = 26, phi(26) = 12 = 2^4 * 3^1, and here there are no larger prime factors than 3 (12 is 3-smooth), thus a(26) = 1. - _Antti Karttunen_, Aug 22 2017
%t a[n_] := Boole[FactorInteger[EulerPhi[n]][[-1, 1]] <= 3];
%t a /@ Range[1, 100] (* _Jean-François Alcover_, Sep 20 2019 *)
%o (PARI) a(n)=n=eulerphi(n); n>>=valuation(n, 2); n==3^valuation(n, 3) \\ _Charles R Greathouse IV_, Feb 21 2013
%Y Cf. A000010, A006530, A065333, A122261, A122256 (partial sums).
%Y Characteristic function of A122254.
%K nonn,mult
%O 1,1
%A _Reinhard Zumkeller_, Aug 29 2006