login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122253
Binet's factorial series. Denominators of the coefficients of a convergent series for the logarithm of the Gamma function.
1
12, 12, 360, 60, 280, 168, 5040, 180, 11880, 264, 240240, 10920, 13104, 720, 367200, 3060, 813960, 15960, 1053360, 27720, 3825360, 16560, 5023200, 163800, 982800, 3024, 2630880, 6960, 33227040, 229152, 116867520, 235620, 282744, 2520, 1612119600, 7676760, 46060560
OFFSET
1,1
COMMENTS
See A122252 for references and formulas.
LINKS
Raphael Schumacher, Rapidly Convergent Summation Formulas involving Stirling Series, arXiv preprint arXiv:1602.00336 [math.NT], 2016.
FORMULA
c(n) = (1/n)*Integral_{x=0..1} x^n*(x - 1/2) dx.
EXAMPLE
c(1) = (1/1)*Integral_{x=0..1} x*(x - 1/2) dx = Integral_{x=0..1} (x^2 - x/2) dx = (x^3/3 - x^2/4)|{x=1} - (x^3/3 - x^2/4)|{x=0} = 1/12.
MAPLE
r := n -> add((-1)^(n-j)*Stirling1(n, j)*j/((j+1)*(j+2)), j = 1..n)/(2*n):
a := n -> denom(r(n)); seq(a(n), n = 1..37); # Peter Luschny, Sep 22 2021
MATHEMATICA
Rising[z_, n_Integer/; n>0] := z Rising[z + 1, n - 1]; Rising[z_, 0] := 1; c[n_Integer/; n>0] := Integrate[Rising[x, n] (x - 1/2), {x, 0, 1}] / n;
PROG
(PARI) a(n) = denominator(sum(j=1, n, (-1)^(n-j)*stirling(n, j, 1)*j/((j+1)*(j+2)))/(2*n)); \\ Michel Marcus, Sep 22 2021
CROSSREFS
Cf. A122252 (numerators), A001163, A001164.
Sequence in context: A038338 A221796 A222298 * A156456 A077180 A105745
KEYWORD
easy,frac,nonn
AUTHOR
Paul Drees (zemyla(AT)gmail.com), Aug 27 2006
STATUS
approved