login
A217575
Numbers n such that floor(sqrt(n)) = floor(n/floor(sqrt(n)))-1.
5
2, 6, 7, 12, 13, 14, 20, 21, 22, 23, 30, 31, 32, 33, 34, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 72, 73, 74, 75, 76, 77, 78, 79, 90, 91, 92, 93, 94, 95, 96, 97, 98, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 132, 133, 134, 135, 136
OFFSET
1,1
COMMENTS
One of four sequences given by classifying natural numbers according to the value of floor(sqrt(n)). See the paper in Link lines and A005563, A217570, A217571.
Can be interpreted as a triangle read by rows: T(n,k) = n*(n+1)+k-1 with n>0, k=1..n. - Bruno Berselli, Oct 11 2012
FORMULA
a(n) = A063657(n) - 1. - Reinhard Zumkeller, Jun 20 2015
EXAMPLE
As a triangle (see the second comment) this begins:
2;
6, 7;
12, 13, 14;
20, 21, 22, 23;
30, 31, 32, 33, 34;
42, 43, 44, 45, 46, 47;
56, 57, 58, 59, 60, 61, 62;
72, 73, 74, 75, 76, 77, 78, 79;
90, 91, 92, 93, 94, 95, 96, 97, 98; etc.
- Bruno Berselli, Oct 11 2012
MATHEMATICA
Select[Range[200], Floor[Sqrt[#]]==Floor[#/Floor[Sqrt[#]]]-1&] (* Harvey P. Dale, Oct 06 2018 *)
PROG
(Visual Basic in Excel)
Sub A217575()
Dim x As Long, n As Long, y As Long, i As Long
x = InputBox("Count to")
For n = 2 To x
y = Int(Sqr(n))
If y = Int(n / y) - 1 Then
i = i + 1
Cells(i, 1) = n
End If
Next n
End Sub
(Magma) [n: n in [1..150] | Isqrt(n) eq Floor(n/Isqrt(n))-1]; // Bruno Berselli, Oct 08 2012
(PARI) is_A217575(n)=n\(n=sqrtint(n))-1==n \\ - M. F. Hasler, Oct 09 2012
(Haskell)
a217575 = subtract 1 . a063657 -- Reinhard Zumkeller, Jun 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Takumi Sato, Oct 07 2012
STATUS
approved