login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217574
(n^2)*(n^2-1)*(n^2-2)*(n^2-3).
1
0, 0, 24, 3024, 43680, 303600, 1413720, 5085024, 15249024, 39929760, 94109400, 203889840, 412293024, 787083024, 1431033240, 2495102400, 4195023360, 6831849024, 10817040024, 16702719120, 25217757600, 37310399280, 54198168024, 77425845024, 108932342400
OFFSET
0,3
COMMENTS
Number of n X n matrices using all elements of {1,2,3,4} exactly once with other entries zero. [clarified by Debashish Sharma, Oct 13 2014]
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: -24*x^2*(x+1)*(x^4+116*x^3+606*x^2+116*x+1)/(x-1)^9. [Colin Barker, Oct 11 2012]
a(n) = 24 * A189345(n). [Joerg Arndt, Oct 12 2012]
a(n) = n^2*(n^6 - 6*n^4 + 11*n^2 - 6). - Jon Perry, Nov 08 2014
a(0)=0, a(1)=0, a(2)=24, a(3)=3024, a(4)=43680, a(5)=303600, a(6)=1413720, a(7)=5085024, a(8)=15249024, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ *a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Mar 02 2015
EXAMPLE
For n=3, there are 3024 such matrices, e.g. ((123),(400),(000)) and ((030),(140),(002)).
MATHEMATICA
Table[(n^2) (n^2 - 1) (n^2 - 2) (n^2 - 3), {n, 0, 30}] (* T. D. Noe, Oct 10 2012 *)
CoefficientList[Series[-24 x^2 (x + 1) (x^4 + 116 x^3 + 606*x^2 + 116*x + 1)/(x-1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 25 2014 *)
Table[Times@@(n^2-Range[0, 3]), {n, 0, 30}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 24, 3024, 43680, 303600, 1413720, 5085024, 15249024}, 30] (* Harvey P. Dale, Mar 02 2015 *)
PROG
(Maxima) makelist((n^2)*(n^2-1)*(n^2-2)*(n^2-3), n, 0, 25); /* Martin Ettl, Oct 11 2012 */
(PARI) a(n)=(n^2)*(n^2-1)*(n^2-2)*(n^2-3); /* Joerg Arndt, Oct 12 2012 */
(Magma) [(n^2)*(n^2-1)*(n^2-2)*(n^2-3): n in [0..30]]; // Vincenzo Librandi, Oct 25 2014
CROSSREFS
Sequence in context: A222852 A189246 A001512 * A272179 A088731 A299697
KEYWORD
nonn,easy
AUTHOR
Debashish Sharma, Oct 07 2012
STATUS
approved