login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217571
a(n) = (2*n*(n+5) + (2*n+1)*(-1)^n - 1)/8.
3
1, 4, 5, 10, 11, 18, 19, 28, 29, 40, 41, 54, 55, 70, 71, 88, 89, 108, 109, 130, 131, 154, 155, 180, 181, 208, 209, 238, 239, 270, 271, 304, 305, 340, 341, 378, 379, 418, 419, 460, 461, 504, 505, 550, 551, 598, 599, 648, 649, 700, 701, 754, 755, 810, 811, 868
OFFSET
1,2
COMMENTS
One of four sequences given by classifying natural numbers according to the value of floor(sqrt(n)). See Sato link and sequences A005563, A217570, A217575.
Numbers n such that floor(sqrt(n)) = floor(n/floor(sqrt(n))) = floor(n/(floor(sqrt(n)) + 2)) + 1.
LINKS
FORMULA
G.f.: x*(1+3*x-x^2-x^3)/((1+x)^2*(1-x)^3). - Bruno Berselli, Oct 11 2012
From Stefano Spezia, Dec 14 2019: (Start)
E.g.f.: (x*(5+x)*cosh(x) - (1-7*x-x^2)*sinh(x))/4.
a(n) = a(n-1) + 1 for n odd.
a(n) = a(n-1) + n + 1 for n even.
a(2*n) = A028552(n).
a(2*n+1) = A028387(n).
(End)
EXAMPLE
From Stefano Spezia, Dec 14 2019: (Start)
Illustration of the initial terms:
o o o o o
o o o o o o o o o o o o
o o o
o o o o o o o o o o
o
(1) (4) (5) (10) (11)
(End)
MAPLE
seq( (2*n^2 +10*n -1 +(-1)^n*(2*n+1))/8, n=1..60); # G. C. Greubel, Dec 19 2019
MATHEMATICA
CoefficientList[Series[(1 + 3*x - x^2 - x^3)/((1 + x)^2*(1 - x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
a[1]=1; a[n_]:=If[EvenQ[n], a[n-1]+1+n, a[n-1]+1]; Array[a, 56] (* Stefano Spezia, Dec 18 2019 *)
PROG
(Visual Basic in Excel)
Sub A217571()
Dim x As Long, n As Long, y As Long, i As Long
x = InputBox("Count to")
For n = 1 To x
y = Int(Sqr(n))
If y = Int(n / y) Then GoTo L1
GoTo L2
L1: If y = Int(n / (y + 2)) + 1 Then
i = i + 1
Cells(i, 1) = n
End If
L2: Next n
End Sub
(Magma) [n: n in [1..900] | Floor(n/Isqrt(n)) eq Floor(n/(Isqrt(n)+2))+1]; // Bruno Berselli, Oct 10 2012
(Maxima) makelist((2*n*(n+5)+(2*n+1)*(-1)^n-1)/8, n, 1, 56); /* Martin Ettl, Oct 15 2012 */
(Magma) I:=[1, 4, 5, 10, 11]; [n le 5 select I[n] else Self(n-1) + 2*Self(n-2) - 2*Self(n-3) - Self(n-4) + Self(n-5): n in [1..60]]; // Vincenzo Librandi, Dec 15 2012
(PARI) vector(60, n, (2*n^2 +10*n -1 +(-1)^n*(2*n+1))/8 ) \\ G. C. Greubel, Dec 19 2019
(Sage) [(2*n^2 +10*n -1 +(-1)^n*(2*n+1))/8 for n in (1..60)] # G. C. Greubel, Dec 19 2019
(GAP) List([1..60], n-> (2*n^2 +10*n -1 +(-1)^n*(2*n+1))/8 ); # G. C. Greubel, Dec 19 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Takumi Sato, Oct 07 2012
EXTENSIONS
Definition by Bruno Berselli, Oct 11 2012
STATUS
approved