login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A217578
a(n) is the least multiple of n, greater than n, such that all digits of a(n) are even (resp. odd) if n is even (resp. odd).
2
3, 4, 9, 8, 15, 24, 35, 24, 99, 20, 33, 24, 39, 28, 75, 48, 51, 288, 57, 40, 315, 44, 115, 48, 75, 208, 135, 84, 319, 60, 93, 64, 99, 68, 175, 288, 111, 228, 117, 80, 533, 84, 559, 88, 135, 460, 517, 240, 539, 200, 153, 208, 159, 486, 715, 224, 171, 406, 177
OFFSET
1,1
COMMENTS
Inspired by Problem 300 in Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
LINKS
Kin Y. Li, Problem 300, Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
MATHEMATICA
Table[k = 2; While[d = IntegerDigits[k*n]; If[OddQ[n], done = And @@ OddQ[d], done = And @@ EvenQ[d]]; ! done, k++]; k*n, {n, 100}] (* T. D. Noe, Oct 09 2012 *)
PROG
(PARI) digs(val, imod2) = {while(val, if ((val%10) % 2 != imod2, return (0)); val = floor(val/10); ); return (1); } digi(i, imod2) = {local(v); v = 2*i; while (! digs(v, imod2), v += i; ); return (v); } digv(n) = {local(i, v); for (i=1, n, v = digi(i, i % 2); print1(v, ", "); ); }
CROSSREFS
Sequence in context: A239384 A242219 A106833 * A280616 A317099 A317715
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Oct 07 2012
STATUS
approved