Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 28 2022 05:43:41
%S 3,4,9,8,15,24,35,24,99,20,33,24,39,28,75,48,51,288,57,40,315,44,115,
%T 48,75,208,135,84,319,60,93,64,99,68,175,288,111,228,117,80,533,84,
%U 559,88,135,460,517,240,539,200,153,208,159,486,715,224,171,406,177
%N a(n) is the least multiple of n, greater than n, such that all digits of a(n) are even (resp. odd) if n is even (resp. odd).
%C Inspired by Problem 300 in Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
%H Michel Marcus, <a href="/A217578/b217578.txt">Table of n, a(n) for n = 1..1000</a>
%H Kin Y. Li, <a href="http://www.math.ust.hk/excalibur/v13_n1.pdf">Problem 300</a>, Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
%t Table[k = 2; While[d = IntegerDigits[k*n]; If[OddQ[n], done = And @@ OddQ[d], done = And @@ EvenQ[d]]; ! done, k++]; k*n, {n, 100}] (* _T. D. Noe_, Oct 09 2012 *)
%o (PARI) digs(val, imod2) = {while(val, if ((val%10) % 2 != imod2, return (0));val = floor(val/10););return (1); } digi(i, imod2) = {local(v);v = 2*i;while (! digs(v, imod2),v += i;);return (v);} digv(n) = {local(i, v);for (i=1, n,v = digi(i, i % 2);print1(v,", "););}
%K nonn,base
%O 1,1
%A _Michel Marcus_, Oct 07 2012