login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173253
Partial sums of A000111.
2
1, 2, 3, 5, 10, 26, 87, 359, 1744, 9680, 60201, 413993, 3116758, 25485014, 224845995, 2128603307, 21520115452, 231385458428, 2636265133869, 31725150246701, 402096338484226, 5353594391608322, 74702468784746223, 1090126355291598575, 16604660518848685480
OFFSET
0,2
COMMENTS
Partial sums of Euler or up/down numbers. Partial sums of expansion of sec x + tan x. Partial sums of number of alternating permutations on n letters.
LINKS
FORMULA
a(n) = SUM[i=0..n] A000111(i) = SUM[i=0..n] (2^i|E(i,1/2)+E(i,1)| where E(n,x) are the Euler polynomials).
G.f.: (1 + x/Q(0))/(1-x),m=+4,u=x/2, where Q(k) = 1 - 2*u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/( 1 - 2*u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
G.f.: 1/(1-x) + T(0)*x/(1-x)^2, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2013
a(n) ~ 2^(n+2)*n!/Pi^(n+1). - Vaclav Kotesovec, Oct 27 2016
EXAMPLE
a(22) = 1 + 1 + 1 + 2 + 5 + 16 + 61 + 272 + 1385 + 7936 + 50521 + 353792 + 2702765 + 22368256 + 199360981 + 1903757312 + 19391512145 + 209865342976 + 2404879675441 + 29088885112832 + 370371188237525 + 4951498053124096 + 69348874393137901.
MAPLE
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= proc(n) option remember;
`if`(n<0, 0, a(n-1))+ b(n, 0)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 27 2017
MATHEMATICA
With[{nn=30}, Accumulate[CoefficientList[Series[Sec[x]+Tan[x], {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Feb 26 2012 *)
PROG
(Python)
from itertools import accumulate
def A173253(n):
if n<=1:
return n+1
c, blist = 2, (0, 1)
for _ in range(n-1):
c += (blist := tuple(accumulate(reversed(blist), initial=0)))[-1]
return c # Chai Wah Wu, Apr 16 2023
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 14 2010
STATUS
approved