OFFSET
0,2
COMMENTS
Partial sums of Euler or up/down numbers. Partial sums of expansion of sec x + tan x. Partial sums of number of alternating permutations on n letters.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..485
FORMULA
a(n) = SUM[i=0..n] A000111(i) = SUM[i=0..n] (2^i|E(i,1/2)+E(i,1)| where E(n,x) are the Euler polynomials).
G.f.: (1 + x/Q(0))/(1-x),m=+4,u=x/2, where Q(k) = 1 - 2*u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/( 1 - 2*u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
G.f.: 1/(1-x) + T(0)*x/(1-x)^2, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2013
a(n) ~ 2^(n+2)*n!/Pi^(n+1). - Vaclav Kotesovec, Oct 27 2016
EXAMPLE
a(22) = 1 + 1 + 1 + 2 + 5 + 16 + 61 + 272 + 1385 + 7936 + 50521 + 353792 + 2702765 + 22368256 + 199360981 + 1903757312 + 19391512145 + 209865342976 + 2404879675441 + 29088885112832 + 370371188237525 + 4951498053124096 + 69348874393137901.
MAPLE
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= proc(n) option remember;
`if`(n<0, 0, a(n-1))+ b(n, 0)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 27 2017
MATHEMATICA
With[{nn=30}, Accumulate[CoefficientList[Series[Sec[x]+Tan[x], {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Feb 26 2012 *)
PROG
(Python)
from itertools import accumulate
def A173253(n):
if n<=1:
return n+1
c, blist = 2, (0, 1)
for _ in range(n-1):
c += (blist := tuple(accumulate(reversed(blist), initial=0)))[-1]
return c # Chai Wah Wu, Apr 16 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 14 2010
STATUS
approved