login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173256
Partial sums of A001481.
1
0, 1, 3, 7, 12, 20, 29, 39, 52, 68, 85, 103, 123, 148, 174, 203, 235, 269, 305, 342, 382, 423, 468, 517, 567, 619, 672, 730, 791, 855, 920, 988, 1060, 1133, 1207, 1287, 1368, 1450, 1535, 1624, 1714, 1811, 1909, 2009, 2110, 2214, 2320, 2429, 2542, 2658, 2775
OFFSET
1,3
COMMENTS
The subsequence of primes in this sequence begins 3, 7, 29, 103, 269, 619, 1811, 3271.
LINKS
FORMULA
a(n) = Sum_{i=1..n} A001481(i) = Sum_{i=1..n} (numbers that are the sum of 2 nonnegative squares) = Sum_{i=1..n} (numbers n such that i = x^2 + y^2 has a solution in nonnegative integers x, y).
EXAMPLE
a(66) = 0 + 1 + 2 + 4 + 5 + 8 + 9 + 10 + 13 + 16 + 17 + 18 + 20 + 25 + 26 + 29 + 32 + 34 + 36 + 37 + 40 + 41 + 45 + 49 + 50 + 52 + 53 + 58 + 61 + 64 + 65 + 68 + 72 + 73 + 74 + 80 + 81 + 82 + 85 + 89 + 90 + 97 + 98 + 100 + 101 + 104 + 106 + 109 + 113 + 116 + 117 + 121 + 122 + 125 + 128 + 130 + 136 + 137 + 144 + 145 + 146 + 148 + 149 + 153 + 157 + 160 = 4876.
MAPLE
N:= 1000:
A001481:= sort(convert({seq(seq(x^2+y^2, y=0..floor(sqrt(N-x^2))), x=0..floor(sqrt(N)))}, list)):
ListTools:-PartialSums(A001481); # Robert Israel, Mar 15 2016
PROG
(Python)
from itertools import count, accumulate, islice
from sympy import factorint
def A173256_gen(): # generator of terms
return accumulate(filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()), count(0)))
A173256_list = list(islice(A173256_gen(), 30)) # Chai Wah Wu, Jun 27 2022
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 14 2010
EXTENSIONS
a(21) corrected by Robert Israel, Mar 15 2016
STATUS
approved