|
|
A125110
|
|
Cubes which have a partition as the sum of 2 squares.
|
|
4
|
|
|
0, 1, 8, 64, 125, 512, 729, 1000, 2197, 4096, 4913, 5832, 8000, 15625, 17576, 24389, 32768, 39304, 46656, 50653, 64000, 68921, 91125, 117649, 125000, 140608, 148877, 195112, 226981, 262144, 274625, 314432, 373248, 389017, 405224, 512000, 531441
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = A001481(n)^3. - Ray Chandler, Nov 23 2006
Equals A000578 INTERSECT A001481. - R. J. Mathar, Nov 23 2006
|
|
EXAMPLE
|
125 = 5^3 = 2^2 + 11^2 = A001481(54) = A000578(8).
|
|
MATHEMATICA
|
Select[Range[0, 81]^3, SquaresR[2, # ] > 0 &] (* Ray Chandler, Nov 23 2006 *)
|
|
PROG
|
(PARI) isA125110(ncube)={ local(a) ; a=0; while(a^2<=ncube, if(issquare(ncube-a^2), return(1) ; ) ; a++ ; ) ; return(0) ; } { for(n=0, 200, if(isA125110(n^3), print1(n^3, ", ") ; ) ; ) ; } \\ R. J. Mathar, Nov 23 2006
(Python)
def A125110_gen(): # generator of terms
return map(lambda m:m**3, filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()), count(0)))
A125110_list = list(islice(A125110_gen(), 20)) # Chai Wah Wu, Jun 27 2022
|
|
CROSSREFS
|
Cf. A125084, A125111, A001481.
Sequence in context: A118719 A134739 A116978 * A209990 A235425 A255932
Adjacent sequences: A125107 A125108 A125109 * A125111 A125112 A125113
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Artur Jasinski, Nov 21 2006
|
|
EXTENSIONS
|
Corrected and extended by R. J. Mathar and Ray Chandler, Nov 23 2006
|
|
STATUS
|
approved
|
|
|
|