login
A125110
Cubes which have a partition as the sum of 2 squares.
4
0, 1, 8, 64, 125, 512, 729, 1000, 2197, 4096, 4913, 5832, 8000, 15625, 17576, 24389, 32768, 39304, 46656, 50653, 64000, 68921, 91125, 117649, 125000, 140608, 148877, 195112, 226981, 262144, 274625, 314432, 373248, 389017, 405224, 512000, 531441
OFFSET
1,3
LINKS
FORMULA
a(n) = A001481(n)^3. - Ray Chandler, Nov 23 2006
Equals A000578 INTERSECT A001481. - R. J. Mathar, Nov 23 2006
EXAMPLE
125 = 5^3 = 2^2 + 11^2 = A001481(54) = A000578(8).
MATHEMATICA
Select[Range[0, 81]^3, SquaresR[2, # ] > 0 &] (* Ray Chandler, Nov 23 2006 *)
PROG
(PARI) isA125110(ncube)={ local(a) ; a=0; while(a^2<=ncube, if(issquare(ncube-a^2), return(1) ; ) ; a++ ; ) ; return(0) ; } { for(n=0, 200, if(isA125110(n^3), print1(n^3, ", ") ; ) ; ) ; } \\ R. J. Mathar, Nov 23 2006
(Python)
def A125110_gen(): # generator of terms
return map(lambda m:m**3, filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()), count(0)))
A125110_list = list(islice(A125110_gen(), 20)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 21 2006
EXTENSIONS
Corrected and extended by R. J. Mathar and Ray Chandler, Nov 23 2006
STATUS
approved