login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011828
Number of f-vectors for simplicial complexes of dimension at most 3 on at most n-1 vertices.
3
2, 3, 5, 10, 26, 95, 457, 2246, 9705, 35926, 115688, 331201, 859587, 2054860, 4582126, 9627831, 19217260, 36679253, 67308375, 119286676, 204940824, 342425909, 557944719, 888630900, 1386246251, 2121866592, 3191757298
OFFSET
1,1
REFERENCES
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).
S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.
FORMULA
a(n+1) = (12*n^10 -112*n^9 +351*n^8 -132*n^7 +378*n^6 -2856*n^5 +4839*n^4 +56812*n^3 -5580*n^2 +309168*n +725760)/362880 fits terms up to 3191757298. [Frank Ellermann]
Empirical G.f.: -x*(x^10 -11*x^9 +69*x^8 -130*x^7 +380*x^6 -400*x^5 +356*x^4 -210*x^3 +82*x^2 -19*x +2)/(x -1)^11. [Colin Barker, Sep 18 2012]
CROSSREFS
Sequence in context: A259438 A135961 A173253 * A011829 A011830 A011831
KEYWORD
nonn
AUTHOR
Svante Linusson (linusson(AT)math.kth.se)
STATUS
approved